博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Prometheus监控实践:Kubernetes集群监控
阅读量:6291 次
发布时间:2019-06-22

本文共 11196 字,大约阅读时间需要 37 分钟。

本文将总结一下我们目前使用Prometheus对Kubernetes集群监控的实践。 我们选择Prometheus作为监控系统主要在以下各层面实现监控:

  • 基础设施层:监控各个主机服务器资源(包括Kubernetes的Node和非Kubernetes的Node),如CPU,内存,网络吞吐和带宽占用,磁盘I/O和磁盘使用等指标。
  • 中间件层:监控独立部署于Kubernetes集群之外的中间件,例如:MySQL、Redis、RabbitMQ、ElasticSearch、Nginx等。
  • Kubernetes集群:监控Kubernetes集群本身的关键指标
  • Kubernetes集群上部署的应用:监控部署在Kubernetes集群上的应用

1.基础设施层和中间件层的监控

其中基础设施层监控指标的拉取肯定是来在的node_exporter,因为我们要监控的服务器节点既包含Kubernetes节点又包含其他部署独立中间件的节点, 所以我们并没有将node_exporter以daemonset的形式部署到k8s上,而是使用ansible将node_exporter以二进制的形式部署到所有要监控的服务器上。 而负责从node_exporter拉取指标的Prometheus也是用ansible独立部署在Kubernetes集群外部的。Prometheus的配置文件prometheus.yml使用ansible的j2模板生成。

中间层的监控和基础设施层监控类似,使用ansible在各个中间件所在的主机上部署各个中间件的exporter,仍然使用上面在Kubernetes集群外部的这个Prometheus从这些exporter拉取指标,Prometheus的配置文件prometheus.yml使用ansible的j2模板生成。

2.Kubernetes集群的监控

要实现对Kubernetes集群的监控,因为Kubernetes的rbac机制以及证书认证,当然是把Prometheus部署在Kubernetes集群上最方便。可是我们目前的监控系统是以k8s集群外部的Prometheus为主的,grafana和告警都是使用这个外部的Prometheus,如果还需要在Kubernetes集群内部部署一个Prometheus的话一定要把它桶外部的Prometheus联合起来,好在Prometheus支持Federation。

2.1 Prometheus的Federation简介

Federation允许一个Prometheus从另一个Prometheus中拉取某些指定的时序数据。Federation是Prometheus提供的扩展机制,允许Prometheus从一个节点扩展到多个节点,实际使用中一般会扩展成树状的层级结构。下面是Prometheus官方文档中对federation的配置示例:

- job_name: 'federate' scrape_interval: 15s honor_labels: true metrics_path: '/federate' params: 'match[]': - '{job="prometheus"}' - '{__name__=~"job:.*"}' static_configs: - targets: - 'source-prometheus-1:9090' - 'source-prometheus-2:9090' - 'source-prometheus-3:9090'

这段配置所属的Prometheus将从source-prometheus-1 ~ 3这3个Prometheus的/federate端点拉取监控数据。 match[]参数指定了只拉取带有job=”prometheus标签的指标,或者名称以job开头的指标。

2.2 在Kubernetes上部署Prometheus

前面已经介绍了将使用Prometheus federation的形式,k8s集群外部的Prometheus从k8s集群中Prometheus拉取监控数据,外部的Prometheus才是监控数据的存储。 k8s集群中部署Prometheus的数据存储层可以简单的使用emptyDir,数据只保留24小时(或更短时间)即可,部署在k8s集群上的这个Prometheus实例即使发生故障也可以放心的让它在集群节点中漂移。

在k8s上部署Prometheus十分简单,只需要下面4个文件:prometheus.rbac.yml, prometheus.config.yml, prometheus.deploy.yml, prometheus.svc.yml。 下面给的例子中将Prometheus部署到kube-system命名空间。

prometheus.rbac.yml定义了Prometheus容器访问k8s apiserver所需的ServiceAccount和ClusterRole及ClusterRoleBinding,参考:

apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRolemetadata: name: prometheusrules: - apiGroups: [""] resources: - nodes - nodes/proxy - services - endpoints - pods verbs: ["get", "list", "watch"] - apiGroups: - extensions resources: - ingresses verbs: ["get", "list", "watch"] - nonResourceURLs: ["/metrics"] verbs: ["get"] ---apiVersion: v1kind: ServiceAccountmetadata: name: prometheus namespace: kube-system---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata: name: prometheusroleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: prometheussubjects: - kind: ServiceAccount name: prometheus namespace: kube-system

prometheus.config.yml configmap中的prometheus的配置文件,参考:

apiVersion: v1kind: ConfigMapmetadata: name: prometheus-config namespace: kube-systemdata: prometheus.yml: | global: scrape_interval: 15s evaluation_interval: 15s scrape_configs: - job_name: 'kubernetes-apiservers' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https  - job_name: 'kubernetes-nodes' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${
1}/proxy/metrics - job_name: 'kubernetes-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${
1}/proxy/metrics/cadvisor - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - job_name: 'kubernetes-services' kubernetes_sd_configs: - role: service metrics_path: /probe params: module: [http_2xx] relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe] action: keep regex: true - source_labels: [__address__] target_label: __param_target - target_label: __address__ replacement: blackbox-exporter.example.com:9115 - source_labels: [__param_target] target_label: instance - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] target_label: kubernetes_name - job_name: 'kubernetes-ingresses' kubernetes_sd_configs: - role: ingress relabel_configs: - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe] action: keep regex: true - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path] regex: (.+);(.+);(.+) replacement: ${1}://${
2}${
3} target_label: __param_target - target_label: __address__ replacement: blackbox-exporter.example.com:9115 - source_labels: [__param_target] target_label: instance - action: labelmap regex: __meta_kubernetes_ingress_label_(.+) - source_labels: [__meta_kubernetes_namespace] target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_ingress_name] target_label: kubernetes_name - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port] action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_pod_name] action: replace target_label: kubernetes_pod_name

prometheus.deploy.yml定义Prometheus的部署:

---apiVersion: apps/v1beta2kind: Deploymentmetadata: labels: name: prometheus-deployment name: prometheus namespace: kube-systemspec: replicas: 1 selector: matchLabels: app: prometheus template: metadata: labels: app: prometheus spec: containers: - image: harbor.frognew.com/prom/prometheus:2.0.0 name: prometheus command: - "/bin/prometheus" args: - "--config.file=/etc/prometheus/prometheus.yml" - "--storage.tsdb.path=/prometheus" - "--storage.tsdb.retention=24h" ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: "/prometheus" name: data - mountPath: "/etc/prometheus" name: config-volume resources: requests: cpu: 100m memory: 100Mi limits: cpu: 500m memory: 2500Mi serviceAccountName: prometheus imagePullSecrets: - name: regsecret volumes: - name: data emptyDir: {} - name: config-volume configMap: name: prometheus-config

prometheus.svc.yml定义Prometheus的Servic,需要将Prometheus以NodePort, LoadBalancer或使用Ingress暴露到集群外部,这样外部的Prometheus才能访问它:

---kind: ServiceapiVersion: v1metadata: labels: app: prometheus name: prometheus namespace: kube-systemspec: type: NodePort ports: - port: 9090 targetPort: 9090 nodePort: 30003 selector: app: prometheus

2.3 配置Prometheus Federation

完成Kubernetes集群上的Prometheus的部署之后,下面将配置集群外部的Prometheus使其从集群内部的Prometheus拉取数据。 实际上只需以静态配置的形式添加一个job就可以:

- job_name: 'federate' scrape_interval: 15s honor_labels: true metrics_path: '/federate' params: 'match[]': - '{job=~"kubernetes-.*"}' static_configs: - targets: - '
:30003'

注意上面的配置是外部Prometheus拉取k8s集群上面所有名称以kubernetes-的job的监控数据。

2.4 Kubernetes集群Grafana Dashboard

监控Dashboard使用这个即可。 另外关于Pod和Deployment还有这两个Dashboard:和。

2.5 Kubernetes集群告警规则

可以对apiserver和kubelet两个关键组件的存活状态进行监控,规则如下:

up{
job=~"kubernetes-apiservers|kubernetes-nodes|kubernetes-cadvisor"} == 0

更多的告警规则可以通过查看上面2.4中的grafana dashboard中监控的关键指标,选择和合适的指标进行设置,实际上一套好的监控系统的监控指标和告警规则并不是越多越好。

3.Kubernetes集群上部署应用的监控

Kubernetes集群上部署应用的监控需要从两个方面:

  • Kubernetes集群上Pod, DaemonSet, Deployment, Job, CronJob等各种资源对象的状态需要监控,这也反映了使用这些资源部署的应用的状态。但通过查看前面Prometheus从k8s集群拉取的指标(这些指标主要来自apiserver和kubelet中集成的cAdvisor),并没有具体的各种资源对象的状态指标。对于Prometheus来说,当然是需要引入新的exporter来暴露这些指标,Kubernetes提供了一个正式我们需要。
  • Kubernetes集群上应用内部的监控,这个与具体应用的开发语言,开发框架和具体技术紧密相关,比如Java应用的JVM监控,Go应用的GC监控等等,这个需要应用自身作为Exporter暴露这些指标或在应用的Pod中起一个exporter的sidecar容器。

这里将主要介绍kube-state-metrics,而对于应用内部的监控实践后边有时间再单独总结。kube-state-metrics使用kubernetes的go语言客户端可以从Kubernetes集群中获取各种资源对象的指标。

3.1 在Kubernetes上部署kube-state-metrics

kube-state-metrics已经给出了在Kubernetes部署的manifest定义文件,具体的文件定义都在。

将kube-state-metrics部署到Kubernetes上之后,就会发现Kubernetes集群中的Prometheus会在kubernetes-service-endpoints这个job下自动服务发现kube-state-metrics,并开始拉取metrics,当然集群外部的Prometheus也能从集群中的Prometheus拉取到这些数据了。这是因为上2.2中prometheus.config.yml中Prometheus的配置文件job kubernetes-service-endpoints的配置。而部署kube-state-metrics的manifest定义文件kube-state-metrics-service.yaml对kube-state-metricsService的定义包含annotation prometheus.io/scrape: ‘true’,因此kube-state-metrics的endpoint可以被Prometheus自动服务发现。

关于kube-state-metrics暴露的所有监控指标可以参考kube-state-metrics的文档。

3.2 告警规则

目前我们根据从kube-state-metrics获取的监控指标,制定了以下告警规则:

  • 存在执行失败的Job: kube_job_status_failed{job=”kubernetes-service-endpoints”,k8s_app=”kube-state-metrics”}==1
  • 集群节点状态错误: kube_node_status_condition{condition=”Ready”,status!=”true”}==1
  • 集群节点内存或磁盘资源短缺: kube_node_status_condition{condition=~”OutOfDisk|MemoryPressure|DiskPressure”,status!=”false”}==1
  • 集群中存在失败的PVC:kube_persistentvolumeclaim_status_phase{phase=”Failed”}==1
  • 集群中存在启动失败的Pod:kube_pod_status_phase{phase=~”Failed|Unknown”}==1
  • 最近30分钟内有Pod容器重启: changes(kube_pod_container_status_restarts[30m])>0

其中关于Pod状态的的告警尤为重要,可以在Jenkins完成CI/CD自动发布后,不用守在Kubernetes Dashboard旁边确认这个Deployment关联的Pod已经全部启动,因为如果出现问题是会收到Prometheus的告警的。

本文转自kubernetes中文社区-

转载地址:http://kuuta.baihongyu.com/

你可能感兴趣的文章
《sift算法详解》阅读笔记
查看>>
HTML5 Web Workers 简单例子
查看>>
谈谈Mono开发的一些想法 ^_^
查看>>
构造函数
查看>>
数据结构 第6章 图 单元小结
查看>>
extern "C"
查看>>
JAVA构造方法
查看>>
Java中的关键字
查看>>
基础算法 ---> 二分法
查看>>
Java内部类
查看>>
数据结构和算法:队列和栈
查看>>
用户登录保存数据实例(慕课笔记 使用SharedPreferences保存用户名)
查看>>
如何判断一条sql(update,delete)语句是否执行成功
查看>>
JSONObject.parseObject(jsonStr);和JSONObject.fromObject(jsonStr);
查看>>
【集训队作业2018】小Z的礼物
查看>>
使用SQL Server Analysis Services数据挖掘的关联规则实现商品推荐功能(三)
查看>>
C++之RAII
查看>>
1596:Bug Hunt
查看>>
python经典笔试、面试题-01
查看>>
Java基础学习总结(69)——匿名内部类与Lambda表达式
查看>>